The chemokine CCL2 protects against methylmercury neurotoxicity.
نویسندگان
چکیده
Industrial pollution due to heavy metals such as mercury is a major concern for the environment and public health. Mercury, in particular methylmercury (MeHg), primarily affects brain development and neuronal activity, resulting in neurotoxic effects. Because chemokines can modulate brain functions and are involved in neuroinflammatory and neurodegenerative diseases, we tested the possibility that the neurotoxic effect of MeHg may interfere with the chemokine CCL2. We have used an original protocol in young mice using a MeHg-contaminated fish-based diet for 3 months relevant to human MeHg contamination. We observed that MeHg induced in the mice cortex a decrease in CCL2 concentrations, neuronal cell death, and microglial activation. Knock-out (KO) CCL2 mice fed with a vegetal control food already presented a decrease in cortical neuronal cell density in comparison with wild-type animals under similar diet conditions, suggesting that the presence of CCL2 is required for normal neuronal survival. Moreover, KO CCL2 mice showed a pronounced neuronal cell death in response to MeHg. Using in vitro experiments on pure rat cortical neurons in culture, we observed by blockade of the CCL2/CCR2 neurotransmission an increased neuronal cell death in response to MeHg neurotoxicity. Furthermore, we showed that sod genes are upregulated in brain of wild-type mice fed with MeHg in contrast to KO CCL2 mice and that CCL2 can blunt in vitro the decrease in glutathione levels induced by MeHg. These original findings demonstrate that CCL2 may act as a neuroprotective alarm system in brain deficits due to MeHg intoxication.
منابع مشابه
Effects of Methylmercury Contained in a Diet Mimicking the Wayana Amerindians Contamination through Fish Consumption: Mercury Accumulation, Metallothionein Induction, Gene Expression Variations, and Role of the Chemokine CCL2
Methylmercury (MeHg) is a potent neurotoxin, and human beings are mainly exposed to this pollutant through fish consumption. We addressed the question of whether a diet mimicking the fish consumption of Wayanas Amerindians from French Guiana could result in observable adverse effects in mice. Wayanas adult men are subjected to a mean mercurial dose of 7 g Hg/week/kg of body weight. We decided t...
متن کاملDe Novo Synthesized Estradiol Protects against Methylmercury-Induced Neurotoxicity in Cultured Rat Hippocampal Slices
BACKGROUND Estrogen, a class of female sex steroids, is neuroprotective. Estrogen is synthesized in specific areas of the brain. There is a possibility that the de novo synthesized estrogen exerts protective effect in brain, although direct evidence for the neuroprotective function of brain-synthesized estrogen has not been clearly demonstrated. Methylmercury (MeHg) is a neurotoxin that induces...
متن کاملDifferential Modulation of Retinal Degeneration by Ccl2 and Cx3cr1 Chemokine Signalling
Microglia and macrophages are recruited to sites of retinal degeneration where local cytokines and chemokines determine protective or neurotoxic microglia responses. Defining the role of Ccl2-Ccr2 and Cx3cl1-Cx3cr1 signalling for retinal pathology is of particular interest because of its potential role in age-related macular degeneration (AMD). Ccl2, Ccr2, and Cx3cr1 signalling defects impair m...
متن کاملResponse inhibition is impaired by developmental methylmercury exposure: acquisition of low-rate lever-pressing.
Developmental methylmercury (MeHg) exposure produces response perseveration on discrimination reversal procedures, disrupts sensitivity to reinforcement, and enhances sensitivity to dopamine agonists - a profile suggesting a deficit in behavioral inhibition. To examine inhibition, we examined MeHg's effects on the acquisition and persistence of low-rate lever-pressing following a history of hig...
متن کاملAbsence of the chemokine receptor CCR2 protects against cerebral ischemia/reperfusion injury in mice.
BACKGROUND AND PURPOSE The chemokine, monocyte chemoattractant protein-1 (CCL2), is a major factor driving leukocyte infiltration into the brain parenchyma in a variety of neuropathologic conditions associated with inflammation, including stroke. In addition, recent studies indicate that CCL2 and its receptor (CCR2) could have an important role in regulating blood-brain barrier (BBB) permeabili...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید
ثبت ناماگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید
ورودعنوان ژورنال:
- Toxicological sciences : an official journal of the Society of Toxicology
دوره 125 1 شماره
صفحات -
تاریخ انتشار 2012